Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2395, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493164

RESUMO

Zygotic genome activation (ZGA) is a universal process in early embryogenesis of metazoan, when the quiescent zygotic nucleus initiates global transcription. However, the mechanisms related to massive genome activation and allele-specific expression (ASE) remain not well understood. Here, we develop hybrids from two deeply diverged (120 Mya) ascidian species to symmetrically document the dynamics of ZGA. We identify two coordinated ZGA waves represent early developmental and housekeeping gene reactivation, respectively. Single-cell RNA sequencing reveals that the major expression wave exhibits spatial heterogeneity and significantly correlates with cell fate. Moreover, allele-specific expression occurs in a species- rather than parent-related manner, demonstrating the divergence of cis-regulatory elements between the two species. These findings provide insights into ZGA in chordates.


Assuntos
Cordados , Urocordados , Animais , Urocordados/genética , Alelos , Zigoto/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento
2.
Hortic Res ; 11(3): uhae022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469381

RESUMO

Mentha is a commonly used spice worldwide, which possesses medicinal properties and fragrance. These characteristics are conferred, at least partially, by essential oils such as menthol. In this study, a gap-free assembly with a genome size of 414.3 Mb and 31,251 coding genes was obtained for Mentha suaveolens 'Variegata'. Based on its high heterozygosity (1.5%), two complete haplotypic assemblies were resolved, with genome sizes of 401.9 and 405.7 Mb, respectively. The telomeres and centromeres of each haplotype were almost fully annotated. In addition, we detected a total of 41,135 structural variations. Enrichment analysis demonstrated that genes involved in terpenoid biosynthesis were affected by these structural variations. Analysis of volatile metabolites showed that M. suaveolens mainly produces piperitenone oxide rather than menthol. We identified three genes in the M. suaveolens genome which encode isopiperitenone reductase (ISPR), a key rate-limiting enzyme in menthol biosynthesis. However, the transcription levels of ISPR were low. Given that other terpenoid biosynthesis genes were expressed, M. suaveolens ISPRs may account for the accumulation of piperitenone oxide in this species. The findings of this study may provide a valuable resource for improving the detection rate and accuracy of genetic variants, thereby enhancing our understanding of their impact on gene function and expression. Moreover, our haplotype-resolved gap-free genome assembly offers novel insights into molecular marker-assisted breeding of Mentha.

3.
Nat Commun ; 15(1): 1537, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378731

RESUMO

Cepharanthine is a secondary metabolite isolated from Stephania. It has been reported that it has anti-conronaviruses activities including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we assemble three Stephania genomes (S. japonica, S. yunnanensis, and S. cepharantha), propose the cepharanthine biosynthetic pathway, and assess the antiviral potential of compounds involved in the pathway. Among the three genomes, S. japonica has a near telomere-to-telomere assembly with one remaining gap, and S. cepharantha and S. yunnanensis have chromosome-level assemblies. Following by biosynthetic gene mining and metabolomics analysis, we identify seven cepharanthine analogs that have broad-spectrum anti-coronavirus activities, including SARS-CoV-2, Guangxi pangolin-CoV (GX_P2V), swine acute diarrhoea syndrome coronavirus (SADS-CoV), and porcine epidemic diarrhea virus (PEDV). We also show that two other genera, Nelumbo and Thalictrum, can produce cepharanthine analogs, and thus have the potential for antiviral compound discovery. Results generated from this study could accelerate broad-spectrum anti-coronavirus drug discovery.


Assuntos
Alphacoronavirus , Benzodioxóis , Benzilisoquinolinas , Stephania , Animais , Suínos , China/epidemiologia , SARS-CoV-2 , Antivirais/farmacologia
4.
Sci China Life Sci ; 67(2): 258-273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837531

RESUMO

Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.


Assuntos
Plantas Medicinais , Plantas Medicinais/genética , Melhoramento Vegetal , Genômica/métodos , Sequenciamento Completo do Genoma , Produtos Agrícolas/genética , Genoma de Planta/genética
5.
Hortic Res ; 10(9): uhad139, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37671073

RESUMO

Polygala tenuifolia is a perennial medicinal plant that has been widely used in traditional Chinese medicine for treating mental diseases. However, the lack of genomic resources limits the insight into its evolutionary and biological characterization. In the present work, we reported the P. tenuifolia genome, the first genome assembly of the Polygalaceae family. We sequenced and assembled this genome by a combination of Illumnina, PacBio HiFi, and Hi-C mapping. The assembly includes 19 pseudochromosomes covering ~92.68% of the assembled genome (~769.62 Mb). There are 36 463 protein-coding genes annotated in this genome. Detailed comparative genome analysis revealed that P. tenuifolia experienced two rounds of whole genome duplication that occurred ~39-44 and ~18-20 million years ago, respectively. Accordingly, we systematically reconstructed ancestral chromosomes of P. tenuifolia and inferred its chromosome evolution trajectories from the common ancestor of core eudicots to the present species. Based on the transcriptomics data, enzyme genes and transcription factors involved in the synthesis of triterpenoid saponin in P. tenuifolia were identified. Further analysis demonstrated that whole-genome duplications and tandem duplications play critical roles in the expansion of P450 and UGT gene families, which contributed to the synthesis of triterpenoid saponins. The genome and transcriptome data will not only provide valuable resources for comparative and functional genomic researches on Polygalaceae, but also shed light on the synthesis of triterpenoid saponin.

6.
Planta ; 258(4): 83, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37721598

RESUMO

Gene annotation is essential for genome-based studies. However, algorithm-based genome annotation is difficult to fully and correctly reveal genomic information, especially for species with complex genomes. Artemisia annua L. is the only commercial resource of artemisinin production though the content of artemisinin is still to be improved. Genome-based genetic modification and breeding are useful strategies to boost artemisinin content and therefore, ensure the supply of artemisinin and reduce costs, but better gene annotation is urgently needed. In this study, we manually corrected the newly released genome annotation of A. annua using second- and third-generation transcriptome data. We found that incorrect gene information may lead to differences in structural, functional, and expression levels compared to the original expectations. We also identified alternative splicing events and found that genome annotation information impacted identifying alternative splicing genes. We further demonstrated that genome annotation information and alternative splicing could affect gene expression estimation and gene function prediction. Finally, we provided a valuable version of A. annua genome annotation and demonstrated the importance of gene annotation in future research.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Processamento Alternativo/genética , Melhoramento Vegetal , Genômica
7.
Hortic Res ; 10(9): uhad164, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37731862

RESUMO

Artemisia annua is the only known plant source of the potent antimalarial artemisinin, which occurs as the low- and high-artemisinin producing (LAP and HAP) chemotypes. Nevertheless, the different mechanisms of artemisinin producing between these two chemotypes were still not fully understood. Here, we performed a comprehensive analysis of genome resequencing, metabolome, and transcriptome data to systematically compare the difference in the LAP chemotype JL and HAP chemotype HAN. Metabolites analysis revealed that 72.18% of sesquiterpenes was highly accumulated in HAN compared to JL. Integrated omics analysis found a DBR2-Like (DBR2L) gene may be involved in artemisinin biosynthesis. DBR2L was highly homologous with DBR2, belonged to ORR3 family, and had the DBR2 activity of catalyzing artemisinic aldehyde to dihydroartemisinic aldehyde. Genome resequencing and promoter cloning revealed that complicated variations existed in DBR2L promoters among different varieties of A. annua and were clustered into three variation types. The promoter activity of diverse variant types showed obvious differences. Furthermore, the core region (-625 to 0) of the DBR2L promoter was identified and candidate transcription factors involved in DBR2L regulation were screened. Thus, the result indicates that DBR2L is another key enzyme involved in artemisinin biosynthesis. The promoter variation in DBR2L affects its expression level, and thereby may result in the different yield of artemisinin in varieties of A. annua. It provides a novel insight into the mechanism of artemisinin-producing difference in LAP and HAP chemotypes of A. annua, and will assist in a high yield of artemisinin in A. annua.

8.
Hortic Res ; 10(2): uhac276, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789257

RESUMO

Lotus (Nelumbo nucifera), an ancient aquatic plant, possesses a unique pharmacological activity that is primarily contributed by benzylisoquinoline alkaloids (BIAs). However, only few genes and enzymes involved in BIA biosynthesis in N. nucifera have been isolated and characterized. In the present study we identified the regiopromiscuity of an O-methyltransferase, designated NnOMT6, isolated from N. nucifera; NnOMT6 was found to catalyze the methylation of monobenzylisoquinoline 6-O/7-O, aporphine skeleton 6-O, phenylpropanoid 3-O, and protoberberine 2-O. We further probed the key residues affecting NnOMT6 activity via molecular docking and molecular dynamics simulation. Verification using site-directed mutagenesis revealed that residues D316, N130, L135, N176A, D269, and E328 were critical for BIA O-methyltransferase activities; furthermore, N323A, a mutant of NnOMT6, demonstrated a substantial increase in catalytic efficiency for BIAs and a broader acceptor scope compared with wild-type NnOMT6. To the best of our knowledge, this is the first study to report the O-methyltransferase activity of an aporphine skeleton without benzyl moiety substitutions in N. nucifera. The study findings provide biocatalysts for the semisynthesis of related medical compounds and give insights into protein engineering to strengthen O-methyltransferase activity in plants.

9.
Nat Ecol Evol ; 6(3): 273-287, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34969986

RESUMO

Despite polymorphic duplicate genes' importance for the early stages of duplicate gene evolution, they are less studied than old gene duplicates. Two essential questions thus remain poorly addressed: how does dosage sensitivity, imposed by stoichiometry in protein complexes or by X chromosome dosage compensation, affect the emergence of complete duplicate genes? Do introns facilitate intergenic and intragenic chimaerism as predicted by the theory of exon shuffling? Here, we analysed new data for Drosophila and public data for humans, to characterize polymorphic duplicate genes with respect to dosage, exon-intron structures and allele frequencies. We found that complete duplicate genes are under dosage constraint induced by protein stoichiometry but potentially tolerated by X chromosome dosage compensation. We also found that in the intron-rich human genome, gene fusions and intragenic duplications extensively use intronic breakpoints generating in-frame proteins, in accordance with the theory of exon shuffling. Finally, we found that only a small proportion of complete or partial duplicates are at high frequencies, indicating the deleterious nature of dosage or gene structural changes. Altogether, we demonstrate how mechanistic factors including dosage sensitivity and exon-intron structure shape the short-term functional consequences of gene duplication.


Assuntos
Embaralhamento de DNA , Drosophila , Duplicação Gênica , Animais , Compensação de Dosagem (Genética) , Drosophila/genética , Éxons , Dosagem de Genes , Genes Duplicados , Humanos , Íntrons
10.
Front Plant Sci ; 12: 733505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659300

RESUMO

Artemisinin is currently the most effective ingredient in the treatment of malaria, which is thus of great significance to study the genetic regulation of Artemisia annua. Alternative splicing (AS) is a regulatory process that increases the complexity of transcriptome and proteome. The most common mechanism of alternative splicing (AS) in plant is intron retention (IR). However, little is known about whether the IR isoforms produced by light play roles in regulating biosynthetic pathways. In this work we would explore how the level of AS in A. annua responds to light regulation. We obtained a new dataset of AS by analyzing full-length transcripts using both Illumina- and single molecule real-time (SMRT)-based RNA-seq as well as analyzing AS on various tissues. A total of 5,854 IR isoforms were identified, with IR accounting for the highest proportion (48.48%), affirming that IR is the most common mechanism of AS. We found that the number of up-regulated IR isoforms (1534/1378, blue and red light, respectively) was more than twice that of down-regulated (636/682) after treatment of blue or red light. In the artemisinin biosynthetic pathway, 10 genes produced 16 differentially expressed IR isoforms. This work demonstrated that the differential expression of IR isoforms induced by light has the potential to regulate sesquiterpenoid biosynthesis. This study also provides high accuracy full-length transcripts, which can be a valuable genetic resource for further research of A. annua, including areas of development, breeding, and biosynthesis of active compounds.

11.
Nat Commun ; 12(1): 5508, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535649

RESUMO

Perilla is a young allotetraploid Lamiaceae species widely used in East Asia as herb and oil plant. Here, we report the high-quality, chromosome-scale genomes of the tetraploid (Perilla frutescens) and the AA diploid progenitor (Perilla citriodora). Comparative analyses suggest post Neolithic allotetraploidization within 10,000 years, and nucleotide mutation in tetraploid is 10% more than in diploid, both of which are dominated by G:C → A:T transitions. Incipient diploidization is characterized by balanced swaps of homeologous segments, and subsequent homeologous exchanges are enriched towards telomeres, with excess of replacements of AA genes by fractionated BB homeologs. Population analyses suggest that the crispa lines are close to the nascent tetraploid, and involvement of acyl-CoA: lysophosphatidylcholine acyltransferase gene for high α-linolenic acid content of seed oil is revealed by GWAS. These resources and findings provide insights into incipient diploidization and basis for breeding improvement of this medicinal plant.


Assuntos
Diploide , Perilla/genética , Plantas Medicinais/genética , Sequência de Bases , Evolução Biológica , Genes de Plantas , Genética Populacional , Genoma de Planta , Estudo de Associação Genômica Ampla , Nucleotídeos/genética , Pigmentação/genética , Folhas de Planta/genética , Poliploidia
12.
Nat Commun ; 12(1): 1243, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623049

RESUMO

To date, a large number of mutations have been screened from breast and ovarian cancer patients. However, most of them are classified into benign or unidentified alterations due to their undetectable phenotypes. Whether and how they could cause tumors remains unknown, and this significantly limits diagnosis and therapy. Here, in a study of a family with hereditary breast and ovarian cancer, we find that two BARD1 mutations, P24S and R378S, simultaneously exist in cis in surviving cancer patients. Neither of the single mutations causes a functional change, but together they synergetically impair the DNA damage response and lead to tumors in vitro and in vivo. Thus, our report not only demonstrates that BARD1 defects account for tumorigenesis but also uncovers the potential risk of synergetic effects between the large number of cis mutations in individual genes in the human genome.


Assuntos
Carcinogênese/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Mutação/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Animais , Proteína BRCA1/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dano ao DNA , Análise Mutacional de DNA , Feminino , Instabilidade Genômica/genética , Síndrome Hereditária de Câncer de Mama e Ovário/patologia , Humanos , Masculino , Camundongos , Linhagem , Peptídeos/metabolismo , Ligação Proteica , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Sci Rep ; 10(1): 20241, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219248

RESUMO

Rheum emodi is a perennial herb and an important medicinal plant, with anthraquinones and flavonoids as its main bioactive compounds. However, there is little knowledge about the biosynthetic pathway of anthraquinones in rhubarbs. In this study, we qualitatively and quantitatively assessed 62 pharmacological metabolites in rhubarb using dynamic multiple reaction monitoring (dMRM) of triple-quadrupole mass spectrometry (QqQ-MS), including 21 anthraquinones, 17 flavonoids, 6 stilbenes, 12 gallate esters, 3 tannins, and 3 others. Besides, the metabolomics results showed significant differences among all the 60 metabolites, except for gallic acid and piceatannol-O-ß-glucoside. The combined transcriptome data of R. palmatum L. (RPL) and R. officinale Baill. (ROB) showed that 21,691 unigenes were annotated in the metabolic pathways. Taken together, 17 differentially expressed genes (DEGs) were associated with the anthraquinone biosynthetic pathway. Additionally, a significant correlation between anthraquinone peak intensity and DEG expression level existed, validating that DEGs contribute to the anthraquinone biosynthetic pathway. RT-qPCR results showed that the cluster-14354.38156 gene may catalyze the O-methylation of emodin to produce physcion. This study provides a useful resource for further studies on secondary metabolism in rhubarb and the combination analysis of transcriptome and metabolome, which can help with the discovery of enzyme genes involved in metabolite biosynthesis.


Assuntos
Antraquinonas/metabolismo , Flavonoides/metabolismo , Rheum/metabolismo , Transcriptoma , Cromatografia Líquida de Alta Pressão/métodos , Genes de Plantas , Rheum/classificação , Rheum/genética , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray/métodos
14.
J Am Heart Assoc ; 9(19): e016796, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32794415

RESUMO

Background The coronavirus disease 2019 (COVID-19) has developed into a global outbreak. Patients with cardiovascular disease (CVD) with COVID-19 have different clinical characteristics and prognostic outcomes. This study aimed to summarize the clinical characteristics and laboratory indicators of patients with COVID-19 with CVD, especially the critically ill patients. Methods and Results This study included 244 patients diagnosed with COVID-19 and CVD (hypertension, coronary heart disease, or heart failure). The patients were categorized into critical (n=36) and noncritical (n=208) groups according to the interim guidance of China's National Health Commission. Clinical, laboratory, and outcome data were collected from the patients' medical records and compared between the 2 groups. The average body mass index of patients was significantly higher in the critical group than in the noncritical group. Neutrophil/lymphocyte ratio, and C-reactive protein, procalcitonin, and fibrinogen, and d-dimer levels at admission were significantly increased in the critical group. The all-cause mortality rate among cases of COVID-19 combined with CVD was 19.26%; the proportion of coronary heart disease and heart failure was significantly higher in deceased patients than in recovered patients. High body mass index, previous history of coronary heart disease, lactic acid accumulation, and a decrease in the partial pressure of oxygen were associated with death. Conclusions All-cause mortality in patients with COVID-19 with CVD in hospitals is high. The high neutrophil/lymphocyte ratio may be a predictor of critical patients. Overweight/obesity combined with coronary heart disease, severe hypoxia, and lactic acid accumulation resulting from respiratory failure are related to poor outcomes. Registration URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2000029865.


Assuntos
Betacoronavirus , Doenças Cardiovasculares/epidemiologia , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , COVID-19 , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , China/epidemiologia , Comorbidade , Infecções por Coronavirus/diagnóstico , Feminino , Fibrinogênio/metabolismo , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico , Pró-Calcitonina/sangue , Prognóstico , Estudos Retrospectivos , SARS-CoV-2 , Taxa de Sobrevida/tendências , Tomografia Computadorizada por Raios X
15.
Biosci Biotechnol Biochem ; 84(10): 2037-2044, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594903

RESUMO

The sacred lotus (Nelumbo nucifera) is widely cultured in East Asia for its horticultural, agricultural, and medicinal values. Although many molecular markers had been used to extrapolate population genetics of the sacred lotus, a study of large variations, such as copy number variation (CNV), are absent up to now. In this study, we applied whole-genome re-sequencing to 24 lotus accessions, and use read depth information to genotype and filter original CNV call. Totally 448 duplications and 4,267 deletions were identified in the final CNV set. Further analysis of population structure revealed that the population structure patterns revealed by CNV and SNP are largely consistent with each other. Our result indicated that deep sequencing followed by genotyping is a quick and straightforward way to mine out CNV from the population, and the CNV along with SNP could enable us to better comprehend the biology of the plant.


Assuntos
Variações do Número de Cópias de DNA/genética , Nelumbo/genética , Polimorfismo de Nucleotídeo Único
16.
Plant J ; 97(5): 841-857, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30444296

RESUMO

Andrographis paniculata is a herbaceous dicot plant widely used for its anti-inflammatory and anti-viral properties across its distribution in China, India and other Southeast Asian countries. A. paniculata was used as a crucial therapeutic treatment during the influenza epidemic of 1919 in India, and is still used for the treatment of infectious disease in China. A. paniculata produces large quantities of the anti-inflammatory diterpenoid lactones andrographolide and neoandrographolide, and their analogs, which are touted to be the next generation of natural anti-inflammatory medicines for lung diseases, hepatitis, neurodegenerative disorders, autoimmune disorders and inflammatory skin diseases. Here, we report a chromosome-scale A. paniculata genome sequence of 269 Mb that was assembled by Illumina short reads, PacBio long reads and high-confidence (Hi-C) data. Gene annotation predicted 25 428 protein-coding genes. In order to decipher the genetic underpinning of diterpenoid biosynthesis, transcriptome data from seedlings elicited with methyl jasmonate were also obtained, which enabled the identification of genes encoding diterpenoid synthases, cytochrome P450 monooxygenases, 2-oxoglutarate-dependent dioxygenases and UDP-dependent glycosyltransferases potentially involved in diterpenoid lactone biosynthesis. We further carried out functional characterization of pairs of class-I and -II diterpene synthases, revealing the ability to produce diversified labdane-related diterpene scaffolds. In addition, a glycosyltransferase able to catalyze O-linked glucosylation of andrograpanin, yielding the major active product neoandrographolide, was also identified. Thus, our results demonstrate the utility of the combined genomic and transcriptomic data set generated here for the investigation of the production of the bioactive diterpenoid lactone constituents of the important medicinal herb A. paniculata.


Assuntos
Andrographis/genética , Diterpenos/metabolismo , Genoma de Planta/genética , Glucosídeos/biossíntese , Compostos Fitoquímicos/biossíntese , Proteínas de Plantas/metabolismo , Andrographis/química , Andrographis/enzimologia , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas de Plantas/genética , Plantas Medicinais/química , Plantas Medicinais/enzimologia , Plantas Medicinais/genética , Tetra-Hidronaftalenos
17.
Stem Cells ; 35(12): 2351-2365, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29044882

RESUMO

As an important component of the tumor microenvironment, CD4+ CD25+ Tregs reduce antitumor immunity, promote angiogenesis and metastasis in breast cancer. However, their function in regulating the "stemness" of tumor cells and the communication between Tregs and cancer stem cells (CSCs) remain elusive. Here, we disclose that the primarily cultured Tregs isolated from breast-tumor-bearing Foxp3-EGFP mouse upregulate the stemness property of breast cancer cells. Tregs increased the side-population and the Aldehyde dehydrogenase-bright population of mouse breast cancer cells, promoted their sphere formation in a paracrine manner, and enhanced the expression of stemness genes, such as Sox2 and so forth. In addition, Tregs increased tumorigenesis, metastasis, and chemoresistance of breast cancer cells. Furthermore, Sox2-overexpression tumor cells activated NF-κB-CCL1 signaling to recruit Tregs through reducing the binding of H3K27Me3 on promoter regions of p65 and Ccl1. These findings reveal the functional interaction between Tregs and CSCs and indicate that targeting on the communication between them is a promising strategy in breast cancer therapy. Stem Cells 2017;35:2351-2365.


Assuntos
Quimiocina CCL1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
18.
J Clin Biochem Nutr ; 61(2): 85-90, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955124

RESUMO

Soy isoflavone has benefits for metabolic syndrome but the mechanism is not completely understood. This study was designed to determine the effects of soy isoflavone on hepatic fat accumulation in non-alcoholic fatty liver disease (NAFLD) rats induced by high fat diet (HFD). Sprague-Dawley rats were administrated with a normal fat diet (control), HFD (NAFLD model), HFD with 10 or 20 mg/kg soy isoflavone daily for 12 weeks. Hepatic and serum lipid contents, liver histopathological examination, serum alanine transaminase (ALT), protein and mRNA expression of sterol regulatory element binding protein (SREBP)-1c, fatty acid synthase (FAS), peroxisome proliferator-activated receptor (PPAR) α were assayed respectively. Our study found that soy isoflavone reduced HFD-induced lipid accumulation in liver, serum ALT and improved liver lobule structure. In addition, the expression of SREBP-1c and FAS was lower, whereas protein level of PPARα was higher in two soy isoflavone groups than that of the HFD group. Collectively, these results demonstrate that soy isoflavone is capable of alleviating hepatic steatosis and delaying the progression of NAFLD via inhibiting lipogenesis and promoting fatty acid oxidation in liver.

19.
Front Plant Sci ; 8: 789, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638386

RESUMO

Dioscorea contains critically important species which can be used as staple foods or sources of bioactive substances, including Dioscorea nipponica, which has been used to develop highly successful drugs to treat cardiovascular disease. Its major active ingredients are thought to be sterol compounds such as diosgenin, which has been called "medicinal gold" because of its valuable properties. However, reliance on naturally growing plants as a production system limits the potential use of D. nipponica, raising interest in engineering metabolic pathways to enhance the production of secondary metabolites. However, the biosynthetic pathway of diosgenin is still poorly understood, and D. nipponica is poorly characterized at a molecular level, hindering in-depth investigation. In the present work, the RNAs from five organs and seven methyl jasmonate treated D. nipponica rhizomes were sequenced using the Illumina high-throughput sequencing platform, yielding 52 gigabases of data, which were pooled and assembled into a reference transcriptome. Four hundred and eighty two genes were found to be highly expressed in the rhizomes, and these genes are mainly involved in stress response and transcriptional regulation. Based on their expression patterns, 36 genes were selected for further investigation as candidate genes involved in dioscin biosynthesis. Constructing co-expression networks based on significant changes in gene expression revealed 15 gene modules. Of these, four modules with properties correlating to dioscin regulation and biosynthesis, consisting of 4,665 genes in total, were selected for further functional investigation. These results improve our understanding of dioscin biosynthesis in this important medicinal plant and will help guide more intensive investigations.

20.
Genome Res ; 26(12): 1663-1675, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27934698

RESUMO

In a broad range of taxa, genes can duplicate through an RNA intermediate in a process mediated by retrotransposons (retroposition). In mammals, L1 retrotransposons drive retroposition, but the elements responsible for retroposition in other animals have yet to be identified. Here, we examined young retrocopies from various animals that still retain the sequence features indicative of the underlying retroposition mechanism. In Drosophila melanogaster, we identified and de novo assembled 15 polymorphic retrocopies and found that all retroposed loci are chimeras of internal retrocopies flanked by discontinuous LTR retrotransposons. At the fusion points between the mRNAs and the LTR retrotransposons, we identified shared short similar sequences that suggest the involvement of microsimilarity-dependent template switches. By expanding our approach to mosquito, zebrafish, chicken, and mammals, we identified in all these species recently originated retrocopies with a similar chimeric structure and shared microsimilarities at the fusion points. We also identified several retrocopies that combine the sequences of two or more parental genes, demonstrating LTR-retroposition as a novel mechanism of exon shuffling. Finally, we found that LTR-mediated retrocopies are immediately cotranscribed with their flanking LTR retrotransposons. Transcriptional profiling coupled with sequence analyses revealed that the sense-strand transcription of the retrocopies often lead to the origination of in-frame proteins relative to the parental genes. Overall, our data show that LTR-mediated retroposition is highly conserved across a wide range of animal taxa; combined with previous work from plants and yeast, it represents an ancient and ongoing mechanism continuously shaping gene content evolution in eukaryotes.


Assuntos
Duplicação Gênica , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , Sequências Repetidas Terminais , Animais , Galinhas/genética , Culicidae/genética , Drosophila melanogaster/genética , Evolução Molecular , Humanos , Mamíferos/genética , Camundongos , Retroelementos , Duplicações Segmentares Genômicas , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...